

NAME:\_

Class:\_\_\_

Teacher: Mrs. J. Bennett or Mr. Sheppard (circle)



# Grade 8 MATHEMATICS

# Things to Know Booklet

| Unit                                  | Pages |
|---------------------------------------|-------|
| Unit 1: Powers                        |       |
| Unit 2: Integers                      |       |
| Unit 3: Fractions                     |       |
| Unit 4: Prisms and Cylinders          |       |
| Unit 5: Percent, Ratio and Rates      |       |
| Unit 6: Linear Equations and graphing |       |
| Unit 7: Data Analysis and Probability |       |
| Unit 8: Geometry and Tessellations    |       |



# <u>Unit 1 POWERS</u> $7^2 = 49$

Base 7

Exponent 2

Perfect square 49

Power 7<sup>2</sup>

Ex.

sidelength AREA  $(7)^2 = 49$ 



# **POWERS 12<sup>2</sup>** $(1.2)^2$ $= 12 \times 12$ $=1.2 \times 1.2$ = 144= 1.44ROOTS $\sqrt{169} = 13$ $\sqrt{1.69} = 1.3$ 2 decimal places 1 decimal place **INVERSES** If $6^2 = 36$ then $\sqrt{36} = 6$ If $\sqrt{36} = 6$ then $6^2 = 36$



Powers to KNOW

| $1^2 = 1$  | $7^2 = 49$   |
|------------|--------------|
| $2^2 = 4$  | $8^2 = 64$   |
| $3^2 = 9$  | $9^2 = 81$   |
| $4^2 = 16$ | $10^2 = 100$ |
| $5^2 = 25$ | $11^2 = 121$ |
| $6^2 = 36$ | $12^2 = 144$ |

**Inverse operations:** 

Squaring and square root

Put in ascending order:

 $12^2, \sqrt{64}, \sqrt{80}, 3^2, \sqrt{7}^2, \sqrt{1}, \sqrt{52}$ 

### Square roots to KNOW



$$\sqrt{121} = 11 \text{ cm}$$

$$121$$

$$cm^2$$

NOTE: SQUARE ROOT ( $\sqrt{\phantom{1}}$ )

means **SIDELENGTH OF A SQUARE** 

# **ESTIMATION**

BENCHMARKS 0, 1/2, 3/4, 1, 2, etc

# Estimate $\sqrt{29}$



# $\sqrt{AREA} = sidelength$

for a square

### **Given: AREA**

### Find: SIDELENGTH



 $11 cm (sidelength)^{2} = AREA$   $121 (11)^{2} = 121 cm^{2}$   $cm^{2}$ 







# PRIME FACTORIZATION METHOD

# <u>TREE</u>



<u>IS</u>



**REASON: identical pairs of primes** 

CONCLUSION: So 16 IS a perfect square



12 = 2x2x3

**REASON: NOT** identical pairs of primes

CONCLUSION: So 12 IS NOT

a perfect square

### LIST of FACTORS METHOD

# ISBOWL16LIST $1 \times 16$ $16 = \{1, 2, 4, 8, 16\}$ $2 \times 8$ REASON: ODD NUMBER of FACTORS $4 \times 4$ CONCLUSION: SO 16 IS a perfect squareISNOTImage: Constant of the second sec

- 12 <u>LIST</u>
- $1 \ge 12 = \{1, 2, 3, 4, 6, 12\}$
- **2 x 6** REASON: NOT <u>ODD</u> NUMBER of FACTORS
- **3 x 4** CONCLUSION: SO 12 <u>IS NOT</u> a

perfect square

# **MODEL USING SQUARE TILES**

**SQUARES VS RECTANGLES** 



6

4

2

3

**REASON:** 

**RECTANGLES <u>NOT</u> square** 

# **CONCLUSION:**

So 12 <u>is NOT</u> a perfect square







# $\frac{Properties}{ZERO PROPERTY}$ $8 \ge 0 = 0 \quad 0 \ge (-8) = 0$

# MULTIPLICATIVE IDENTITY $8 \ge 1 = 8$ $1 \ge (-8) = (-8)$

COMMUTATIVE PROPERTY ORDER

 $6 \times (-7) = (-7) \times 6$ 

$$6+7 = 7+6$$

# **Properties** ASSOCIATIVE PROPERTY GROUPING (2+3)+4 = 2+(3+4) $(2 \times 3) \times 4 = 2 \times (3 \times 4)$ **DISTRIBUTIVE PROPERTY** 2(3+4) = 2x3+2x4**Multiplier** $2(3 - 4) = 2 \times 3 - 2 \times 4$ **Multiplier**

# AREA MODEL

**GROUP** of a SIZE

(-23)(+47) <u>of SIZE</u>

|              | +40                       | +7                         |
|--------------|---------------------------|----------------------------|
| <u>GROUP</u> | (-20)( <mark>+40</mark> ) | (-20)( <b>+7</b> )         |
| -20          | = -800                    | = -140                     |
| -3           | (-3)(+40)<br>= -120       | (-3)( <b>+7</b> )<br>= -21 |

$$(-23)(+47)$$
  
=  $(-800) + (-140) + (-120) + (-21)$   
=  $(-1081)$ 

# Word problem

**<u>Ex. 1</u>**. The product of two numbers is +48.

The sum of the same two numbers is -14. What are the numbers?

| SUM       | (-6) + (-8) = (-14) |
|-----------|---------------------|
| PRODUCT   | (-6)(-8) = (+48)    |
| <u>48</u> | <u>+ve</u>          |
| 1 x 48    | (+)(+)              |
| 2 x 24    | (-)(-)              |
| 4 x 12    |                     |
| 6x8       |                     |

**<u>Ex. 2</u>** The product of two numbers is +20.

The sum of the same two numbers is +2. What are the numbers?

| SUM       | (-4) + (+5) = (+2) |
|-----------|--------------------|
| PRODUCT   | (-4)(+5) = (-20)   |
| <u>20</u> | - <u>ve</u>        |
| 1x 20     | (-)(+)             |
| 2 x 10    | (+)(-)             |
| 4x5       |                    |

| BEDMAS REME                                                       | MBER: change <u>ONE thing</u> per line ( <u>underlined</u> )           |
|-------------------------------------------------------------------|------------------------------------------------------------------------|
| $L \rightarrow R  L \rightarrow R  \underline{S}$                 | UBTRACTION means ADD the OPPOSITE                                      |
| Ex. 1 $-2 + 5 \times (-6)$<br>= $-2 + (-30)$<br>= $-32$           | Ex. 2 5 - $(-50) \div (+10)$<br>= 5 - $(-5)$<br>= +5 + $(+5)$<br>= +10 |
| Ex. 3 $(-2) + (-4)(-6) - 3$<br>= $(-2) + (+24) - (+3)$            | Ex 4 $\frac{-12+2(-1)}{(-9)-2}$                                        |
| = +22 - (+3)<br>= +22 + (-3)                                      | $= \frac{-12+(-2)}{(-9)+(+2)}$                                         |
| = +19                                                             | $= \frac{-14}{-7}$                                                     |
|                                                                   | = +2                                                                   |
| Ex. 5 (-9) × 0 = 0<br>$\frac{0}{-9} = 0$                          | Ex. $(-6)^2$<br>= $(-6)(-6)$<br>= $+36$<br>$-6^2$                      |
| $\frac{-9}{0} = $ <b>undefined</b><br>NOTE: CANNOT divide by ZERO | $ = -1 \cdot 6^{2} = -1 \cdot (+36) = -36 $                            |
| WORD PROBLEMS                                                     | involving INTEGERS                                                     |

| Ex. 1.<br>A submarine dives 9 m for 10 hours. What<br>is the change in distance?<br>GROUPS of a SIZE<br>(+10) (-9)                                         | Ex. 2<br>The temperature drops 5 °C every 3 hours.<br>It this happens for 12 hours what is the<br>change in temperature?<br>Groups $\frac{12}{3} = 4$ groups                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| =(-90) meters                                                                                                                                              | Groups of SIZE<br>(+4) (-5)<br>= $(-20) \circ C$                                                                                                                                                                |
| Ex. 3<br>Alice deposited \$10 per week. She had a<br>total of \$120 in the bank. How many weeks<br>did this take?<br>$\frac{+120}{+10} = 12 \text{ weeks}$ | Ex. 4 Distributive Property<br>Expand $2[(-3) + (-5)]$ then <u>solve</u> .<br>= $2 \times (-3) + 2 \times (-5)$ expand<br>= $(-6) + (-10)$                                                                      |
| Ex. 5<br>The product of two integers is 24<br>The sum of the same two integers is -10.<br>What are the integers?<br>SUM $(-3) + (-8) = (-11)$              | = (-16)<br>Ex. 6<br>Fred travels at 80 km per hour for 10 hours.<br>He is still 100 km from his destination.<br>Using one equation with two operation,<br>create and solve to find how far he had to<br>travel? |
| PRODUCT $(-3)(-8) = (+24)$<br>$\frac{24}{1 \times 24} + \frac{+ve}{+} + \frac{2 \times 12}{3 \times 8} - \frac{-}{3 \times 8}$                             | Travel = groups x size + tagalong<br>Remainder of journey<br>= $(+10)(+80) + 100$<br>= $(+800) + 100$<br>= $[+900 \text{ km}]$                                                                                  |
| Unit 3: FRACTIONS                                                                                                                                          | numerator<br>denominator                                                                                                                                                                                        |



# **ADDITION** CD =**ADD numerators** CD **SUBTRACTION** CD =SUBTRACT numerators CD NOTE: Remember to <u>simplify</u> *all final answers*

# **FRACTION**

# **MULTIPLICATION**



# OR <u>Cancellation Method</u> (CD Method)

# **DIVISION**

| Mult by reciprocal                 | CD Method                               |
|------------------------------------|-----------------------------------------|
|                                    | $\frac{2}{2} \cdot \frac{4}{2}$ CD - 15 |
| $\overline{3} + \overline{5}$      | $3 \frac{5}{10} \frac{10}{10}$          |
|                                    | $=$ $\frac{10}{-12}$                    |
| 2 5                                | 15 15                                   |
| $=$ $\frac{-}{3}\times\frac{-}{4}$ | _ <u>10</u>                             |
| 10                                 | 12                                      |
| $=\frac{12}{12}$                   | 5                                       |
| 5                                  | 6                                       |
| $=\overline{6}$                    |                                         |
|                                    |                                         |



# **AREA MODEL mixed fractions**



# **DIVISION** on a NUMBERLINE

- Change fractions to CD
- Ist fraction
  - what you have
- 2<sup>nd</sup> fraction
  - jump SIZE (numerator)
- Divide line into parts
  - use CD
- Go <u>past</u> what you have when you complete jump SIZE
- Count full jumps
- Count Part jump
  - parts out of
    - total parts of that ONE jump
    - (\_\_\_\_/circled number)

# **Division on a numberline**





<u>3 full jumps</u> and <u>34 of another jump</u>

Answer is 3  $\frac{3}{4}$ 





# SURFACE AREA unit <sup>2</sup>

# S.A. = 2lw + 2wh + 2lh





# $S.A.=2\pi r^2 + 2\pi rh$





# $\underline{\text{VOLUME}} = \text{BASE x HEIGHT}$

(units mm<sup>3</sup>, cm<sup>3</sup>, mL)

Remember:  $1 \text{ cm}^3 = 1 \text{ mL}$ 



| Unit 5:percents, decimals, rates, Ratios Conversions |         |                   |                        |
|------------------------------------------------------|---------|-------------------|------------------------|
| PERCENT                                              | decimal | fraction          | Ratio part:<br>total   |
| 70%                                                  | 0.70    | $\frac{70}{100}$  | 70:100                 |
|                                                      | =0.7    | 100<br>7          | = 7:10                 |
|                                                      |         | $=\frac{10}{10}$  |                        |
| 123%                                                 | 1.23    | 123               | 123:100                |
| >100%                                                |         | 100               |                        |
| 0.7%                                                 | 0.007   | $\frac{0.7}{100}$ | 0.7:100                |
| <1%                                                  |         | $=\frac{100}{7}$  | =7:1000                |
| <b>4</b> %                                           | 0.008   | 0.8               | 0.8:100                |
| 5 = 0.8%                                             |         | 100               | =8:1000                |
| < 1%                                                 |         | 1000<br>1         | = 1:125                |
|                                                      |         | = <u>125</u>      | Reduce all ratio/rates |
| $0.\overline{7}=0.72$                                | 77…     | 0.                | $125 = \frac{1}{8}$    |



**EX.** Sale price is \$646 for a 15% of regular price sale. What is original price? 100%-15% = 85% or  $\frac{85}{100}$ SO DP is 85% of original price.

 $\frac{part}{total} = \frac{646}{x} = \frac{85}{100}$ CROSS MULTIPLY then solve  $\frac{85x}{85} = \frac{64600}{85}$  x = \$760



### **UNIT 6:** LINEAR EQUATIONS and GRAPHING

# **SOLVING** Linear Equations

1. 
$$-3x - 4 = 11$$
  
 $-3x - 4 + 4 = 11 + 4$   
 $\frac{-3x}{-3} = \frac{15}{-3}$   
 $x = -5$ 

2. 
$$7 + \frac{d}{4} = 13$$
$$7 + \frac{d}{4} - 7 = 13 - 7$$
$$\frac{d}{4} \swarrow \frac{6}{1} \qquad \text{cross multiply}$$
$$d = 24$$

3. 
$$-5(3x-4) = -15x + 20$$

4. 
$$-2(-4x+5) = 8x-10$$



### **UNIT 7 : GRAPHS and Misinterpretations**

**Bar graph :** bars

width of bars must be the same

height of bars will vary

specific qualities of objects – larger values

Circle Graph: percentages of objects given

Double Bar Graph: two sets of data on same bar graph

Line graph: changes over time

**Pictograph : images** represent numbers of objects

low numbers of objects

### **MISINTERPRETATIONS:**

- On your graph, axis scale does not start at ZERO
- Scale of axis too small
- Sector of circle graph <u>pulled away from</u> the others

Bar width vary in bar graph/double bar graph

Size of items not the same in pictograph

 $P(A) = \frac{possible outcomes of Event A}{TOTAL number of possibilities}$ 

 $P(A \text{ and } B) = P(A) \times P(B)$ 

P(A or B) = P(A) + P(B)

P(not A) = 1 - P(A)







### Regular tessellation

- tessellation made up of regular polygons
- sum of the angles where vertices meet
- \* No overlap between shapes
- \* No gaps between shapes

at ONE POINT is 360°



### Interior angles table

|            | REGULAR POLYGON | INTERIOR<br>ANGLE<br>MEASURE |
|------------|-----------------|------------------------------|
| B          | triangle        | 60°                          |
| 77         | square          | 90°                          |
| <u>🕁</u> 5 | pentagon        | 108°                         |
| 6          | hexagon         | 120°                         |
| 8          | octagon         | 135°                         |
| D          | decagon         | 144º                         |
| 12         | dodecagon       | 150°                         |

### **Tessellation not regular**

