Chapter 9: PRESSURE

PRESSURE

$>$ The force acting on a certain area of a surface
> Can produce enough force to operate mechanical devices
Ex. Hydraulic systems: pressure through liquids
Pneumatic Systems: pressure through gases
NOTE: GASES are COMPRESSABLE but LIQUIDS are NOT.

Atmospheric Pressure

LAND
At HIGHER altitudes,
> ATMOSPHERIC PRESSURE is LESS
> Your body responds to the change in air pressure EAR POPPING

RELATIONSHIP BETWEEN force, area and pressure
$>$ The LARGER the force, the GREATER the pressure
$>$ The SMALLER the area, the GREATER the pressure

REMEMBER Units
FORCE - NEWTONS (N)
AREA (Iw) - meters squared (m^{2})
Pressure - Pascals (Pa) or kilopascals (kPa)
$1000 \mathrm{~Pa}=1 \mathrm{kPa}$

FORMULA
$P=\frac{F}{A}$
Pressure $=\frac{\text { FORCE }}{\text { AREA }}$

A = Iw
m^{2}

Ex1 A book on a desk exert 16N of force. How much pressure is being exerted on the desk/

$$
\begin{aligned}
A & =I \times \mathrm{w} \\
& =21 \mathrm{~cm} \times 28 \mathrm{~cm} \\
& =0.21 \mathrm{~m} \times 0.28 \mathrm{~m} \\
& =0.0588 \mathrm{~m}^{2} \\
P & =\frac{F}{A} \quad \text { NOTE: } \mathrm{N} / \mathrm{m}^{2}=\mathrm{Pa} \\
& =\frac{16 \mathrm{~N}}{0.0588 \mathrm{~m}^{2}} \\
& =272 \mathrm{~Pa}
\end{aligned}
$$

Ex 2. Same book from above but it's opened. What is the pressure?

$$
\begin{aligned}
A & =I \times \mathrm{w} \\
& =21 \mathrm{~cm} \times 44 \mathrm{~cm} \\
& =0.21 \mathrm{~m} \times 0.44 \mathrm{~m} \\
& =0.0924 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
P & =\frac{F}{A} \\
& =\frac{16 \mathrm{~N}}{0.0924 \mathrm{~m}^{2}} \\
& =173 \mathrm{~Pa}
\end{aligned}
$$

??? WHY is open book pressure smaller than closed book?

Open book is spread over a larger area.

Ex 3

4 m

Force/weight $=20000 \mathrm{~N}$

$$
\begin{array}{rlrl}
P & =F / A & A & =I \times w \\
& =\frac{20000 \mathrm{~N}}{12 \mathrm{~m}^{2}} & & =2 \mathrm{~m} \times 4 \mathrm{~m}
\end{array}
$$

Ex 2 SKATEBOARDING

Weight of skateboard $=1000 \mathrm{~N} \quad$ Pressure from one wheel $=0.0001 \mathbf{~ m}^{2}$
What pressure is exerted on the ground after jumping off a railing and landing on ALL FOUR WHEELS?

Pressure 4 wheels $=4 \times 0.0001 \mathrm{~m}^{2}$

$$
=0.0004 \mathrm{~m}^{2}
$$

$$
\begin{aligned}
P & =\frac{F}{A} \\
& =\frac{1000 \mathrm{~N}}{0.0004 \mathrm{~m}^{2}} \\
& =2500000 \mathrm{~Pa}
\end{aligned}
$$

