\qquad Class: \qquad

Unit 1 POWERS $7^{2}=49$ Base 7 Exponent 2 Perfect square 49 Power 7^{2}	Ex. 1.1 Given: $9^{2}=81$ Base \qquad Exponent Perfect square \qquad Power \qquad
Ex 2. $\sqrt{ }$ means sidelength of a square AREA is inside the square $(7 m)^{2}=49$ INVERSE $\sqrt{49}=7 \mathrm{~m}$	Ex 2.1 What is the inverse of $(12 \mathrm{~m})^{2}=144 ?$ \qquad Ex 2.2. If $\sqrt{36}=6$ then the inverse is Ex 2.3 What is the side length? \qquad
Ex. 3 $\begin{gathered} \sqrt{8100}=90 \\ \sqrt{640000}=800 \\ \sqrt{17}^{2}=17 \\ {\sqrt{8^{2}}}^{2}=8 \end{gathered}$	Ex 3.1 $\begin{array}{r} \sqrt{14400}= \\ \sqrt{250000}= \\ \sqrt{23}^{2}= \\ {\sqrt{11^{2}}}^{=}= \end{array}$ \qquad \qquad \qquad \qquad
Ex. 4 $8^{2}=$ $\sqrt{\mathbf{8 1}}=$ \qquad $\sqrt{\mathbf{8 0}} \doteq$	$\begin{aligned} & \text { Ex. } 4.1 \\ & \mathbf{1 0}^{\mathbf{2}}= \end{aligned}$ \qquad $\sqrt{9}=$ \qquad $\sqrt{\mathbf{2 8}} \doteq$ \qquad

Ex. 9 Pythagorean Theorem - find hypotenuse a 11 b $\begin{gathered} c^{2}=a^{2}+b^{2} \\ x^{2}=5^{2}+11^{2} \\ x^{2}=25+121 \\ x^{2}=146 \\ \sqrt{x^{2}}=\sqrt{146} \\ x \quad=12.08305 \cdots \\ x \quad \cong \mathbf{1 2 . 1} \end{gathered}$ rounded to nearest tenth	Find the missing side. If necessary, round nearest tenth 9.1
	9.3
Ex. 10 Pythagorean Theorem - find leg UNITS: $\mathrm{mm}, \mathrm{cm}^{\mathrm{m}}$	Find the missing side. If necessary, round nearest tenth

10.2	10.3
Ex. 11 WORD Problems	
11.1 A 5 m ladder is leaning on a house to the bottom of a window. The bottom of the ladder is 2 m away from the bottom of the house. How high is the window above the ground. Round to nearest tenth. DIAGRAM SOLUTION	Ex. 11.2 Two cats leave the same spot on a fence. One cat travels 3 km south, the other 4 km west. How far apart are the cats? Round to nearest tenth. DIAGRAM SOLUTION

