\qquad Class: \qquad

1. Write the repeated addition statement as multiplication.

Remember
GROUPS of a SIZE
$(+5)+(+5)+(+5)+(+5)=(+4)(+5)$
Write the multiplication statement as repeated addition.
GROUPS of a SIZE
$\underset{(+7)(-6)}{\downarrow}=(-6)+(-6)+(-6)+(-6)+(-6)+-6)+(-6)$
1.1 Write the repeated addition statement as multiplication.
$(-2)+(-2)+(-2)+(-2)+(-2)=$ \qquad
1.2 Write the multiplication statement as repeated addition.
$(+6)(-4)=$ \qquad

2. Modelling using counters Solid/YELLOW - positive Clear/RED -negative	Modelling using counters Solid/YELLOW - positive Clear/RED -negative
In words: three groups of negative 2 Symbolically: PUT IN \downarrow	
In words:	
three groups of positive 2	

2.3	2.4
Model using counters (-3)(+2) use ZERO PAIRS Step 1	REMOVE Model using counters (-2)(-4) use ZERO PAIRS Step 1
Step 2	Step 2
Answer	Answer

3.1 Multiplying an EVEN number of negatives gives a (positive or negative) answer.	3.2 Multiplying an ODD number of negatives gives a (positive or negative) answer.

4. MULT and DIVISION only		$(+3)(+6)=(+18)$
		$\frac{(+28)}{(+7)}=(+4)$
SAME signs$\begin{array}{ll} (+)(+)=(+) & \frac{(+)}{(+)}=(+) \\ (-)(-)=(+) & \frac{(-)}{(-)}=(+) \end{array}$		$(-5)(-6)=(+30)$
		$\frac{(+32)}{(+8)}=(+4)$
		Examples
		$4.1 \quad(+5)(+9)=(\square)$
		$4.2 \quad \frac{(+30)}{(+5)}=$
		4.3 (-7) $(-3)=$
		$4.4 \quad \frac{(+56)}{(+8)}=$

5. MULT and DIVISION only

$$
(+3)(-7)=(-21)
$$

DIFFERENCE signs

$$
\frac{(+50)}{(-10)}=(-5)
$$

$$
\begin{array}{ll}
(+)(-)=(-) & \frac{(+)}{(-)}=(-) \\
(-)(+)=(-) & \frac{(-)}{(+)}=(-)
\end{array}
$$

$$
(+5)(-6)=(-30)
$$

$$
\frac{(+20)}{(-2)}=(-10)
$$

Examples

5.1	$(+14)(-2)=($
5.2	$\frac{(-30)}{(+5)}=$
5.3	$(-8)(+3)=$
	$\frac{(+44)}{(-11)}=$

6. The product of two numbers is 24 . The sum is -11 . What are the integers?
$(-3)+(-8)=(-11)$
$(-3)(-8)=(+24)$
```
1 x 24
    (+)(+)
2 x 12
3x8
    4\times6
```

6.1 The product of two numbers is $\mathbf{- 3 0}$. The sum is -1. What are the integers?
6.2 The product of two numbers is $\mathbf{+ 2 0}$. The sum is +9 . What are the integers?

7. Multiplication on numberline $($ facing GROUPS $)(\mathrm{f} / \mathrm{b}$ SIZE $)=$ product $(-4) \underset{\text { SIZE }}{(-6)}=(+24)$ Backwards 4 steps/GROUPS	Example: $($ facing GROUPS $)(\mathrm{f} / \mathrm{b}$ SIZE) $=$ product $(+6)(-4)=(-24)$ Backwards 6 steps/GROUPS
$($ facing GROUPS)(f/b SIZE) $=$ product $(+6)(+4)=(+24)$ SIZE forwards 6 steps/GROUPS	$($ facing GROUPS) $(\mathrm{f} / \mathrm{b}$ SIZE) $)=$ product $(-6)(+4)=(-24)$ size forwards 6 steps/GROUPS
Model the multiplication using a numberline.	7.2
$7.1 \quad(+4)(+5)=(+20)$	$(-5)(+7)=(-35)$
7.3 (-3)(-6) $=(-18)$	$7.4 \quad(+2)(-6)=(-12)$

8. Division on numberline

Dividend $\div(\mathrm{f} / \mathrm{b}$ SIZE $)=($ facing STEP $)$

Positive 4 steps backwards

Division on numberline
Dividend $\div(\mathrm{f} / \mathrm{b}$ SIZE $)=($ facing STEP $)$

Positive 4 steps backwards

8.1 Show $(+28) \div(+7)=(+4)$ using a numberline
8.2 Show $(-45) \div(+5)=(+9)$ using a numberline


```
9. Properties
ZERO PROPERTY
8\times0=0
0x(-8)=0
MULTIPLICATIVE IDENTITY
8\times1=8
1\times(-8)=(-8)
COMMUTATIVE PROPERTY (ORDER)
6x (-7) = (-7) x 6
6+7=7+6
ASSOCIATIVE PROPERTY (GROUPING)
(2+3)+4=2+(3+4)
(2 x 3)x 4 = 2 x (3 x 4)
```


DISTRIBUTIVE PROPERTY

```
\[
2(3+4)=2 \times 3+2 \times 4
\]
Multiplier
\[
2(3-4)=2 \times 3-2 \times 4
\]
```

```
Multiplier
```

```
Multiplier
```


9.1 Identify the property

1.1	$1 \times(-15)=(-15)$
1.2	$(-9)(+4)=(-36)$
1.3	$8 \times[(+3) \times(+2)]=[8 \times(+3)] \times(+2)$
1.4	$(-9) \times 0=0$
7.5	$(-5)[4+(-3)]=(-5)(+4)+(-5)(-3)$

10. Using Area model, find $(-36) \times(+53)$

Using Area model, find (-27) $x(-79)$

$$
\begin{aligned}
\text { SUM } & =(+1400)+(+180)+(+490)+(+63) \\
& =+2133
\end{aligned}
$$

10.1 Using Area model, find (+41) $x(39)$.	10.2 Using Area model, find $(-24) x(-72)$.

11. BEDMAS
 L $\varlimsup_{\mathrm{L}} \rightarrow_{\mathrm{R}}$

Which operation do you do first?

Equation	Operation DO NOT EVALUATE!
$(+9)(-4)+(-12) \div(+3)$	
$5-12+(-8)$	
$\frac{(-28)(-1)^{2}}{(-26) \div(+2)}$	
$(-2)+[(+3)+6 \div(-2)]-15$	

Solving using BEDMAS
$L \rightarrow R L \rightarrow R$

| 11.1 $-4+2[8-12]$
 $=$
 $=$
 $=$
 $=$
 $\begin{array}{ll}11.2 & -3 \cdot(+8)-10 \\ =\end{array}$ |
| :--- | :--- |

11.3	$\frac{-6+(+9)}{-3(+7-8)}$	11.4 $-64 \div 4 \div(-2)$ $=$ $=$ $=$ $=$ $=$ 11.5 $-2 \times 5+6 \times 7$

12.4 Fred deposited $\$ 20$ for 9 week. How much money has he deposited?
 12.5 A submarine dives 24 m in 12 seconds. Write the equation which shows this.

12.6George drove from Deer Lake to St. John's at an average speed of $100 \mathrm{~km} / \mathrm{h}$. After 4 hours of driving Blaine was still 250 km away from St. John's. Using an equation involving TWO OPERATIONS, how far apart are Deer Lake and St. John's from one another?

